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Background in computer science. This paper investigates the generic problem of model selection in 
the specific context of Music Information Retrieval (MIR). In MIR research, similarity measures are 
developed for ranking musical items with respect to their relevance to a user’s musical query. The 
application of such similarity measures in MIR systems typically requires musical works to be divided into 
more manageable units. This involves two tasks: melody segmentation and voice separation. For both of 
these tasks, several solutions have been proposed in the symbolic domain. It seems reasonable to 
assume that those solutions that are most in accordance with human performance will result in the best 
ranking of retrieval output. As a first step towards this goal, this paper describes the evaluation of ten 
prominent methods against human performance. 

Background in cognition. Human listeners generally possess two functions that allow them to process 
a continuous stream of music into understandable units: the ability to perceive multiple, successive tones 
as one coherent melodic phrase (melody segmentation) and the ability to differentiate melody notes from 
harmony notes (voice separation). Algorithms for mimicking these human functions have been developed 
from two perspectives: model-driven, taking Gestalt principles as a starting-point; and data-driven, 
inferring rules by learning from large amounts of data. One method excepted, this research focuses on 
model-driven approaches. 

Aims. The aim of the research is to answer two questions: (1) is there enough agreement in human 
segmentation perception to function as a basis for measuring algorithmic performance? and (2) which 
algorithm best models human segmentation? These questions are investigated both for melody 
segmentation and for voice separation. 

Main contribution. We conducted two experiments, each with twenty experts and twenty novices. In 
the first experiment, participants were asked to segment popular melodies. We found a high degree of 
intraclass agreement between the segmentation results of both novices and experts, but, surprisingly 
also for the combined class, justifying use of the results as basis for algorithm benchmarking. Evaluating 
algorithm output against participant data, we conclude that human output is closest to three of the 
chunking algorithms (Grouper, Information Dynamics and LBDM).  

In the second experiment, participants judged which of several melody variants sounds most like the 
original by exhaustive pair-wise comparisons. According to the combined participants, the combined 
output of two algorithms (Skyline and SSA) shows the highest resemblance to the actual melody. Small 
differences were found between experts and novices. 

Implications. We conclude that Grouper, Information Dynamics and LBDM are the best candidate 
algorithms for implementing melody segmentation in MIR systems. There is no reason to segment 
melodies in more than one way in order to accommodate different user groups. For voice separation, the 
situation is different, as the combined results of two algorithms were shown to agree best with 
experimental results, and differences were found between novice and expert performance. There is no 
immediate answer as to how voice separation should be implemented in a MIR system. 

This paper investigates the generic problem 
of model selection in the specific context of 
Music Information Retrieval (MIR). In MIR 
research, strategies are developed for 

enabling automatic access to music collec-
tions. MIR systems enable music industry, 
music professionals and end users to search 
large quantities of musical audio or encoded 
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scores (Casey et al. 2008). Three main 
components can be discerned in such 
systems: user interface, database, and 
similarity measure. The task of the last is to 
compare the user’s query to the items in the 
database and to return a ranked list of search 
results. 

The effective application of similarity meas-
ures typically requires musical works to be 
divided into more manageable units. Typke et 
al. (2007) provide an example of this. In their 
system, melodies are divided into a large 
number of overlapping chunks of 6-9 notes in 
order to make the system tolerant against 
melodic variation, tempo and pitch fluctu-
ation. This results in a considerable increase 
of database size, and accidental matches of 
items that are not logical units from a musical 
perspective may negatively affect the 
ranking. Therefore it is important to look into 
alternative approaches to segmentation. 

Human listeners generally possess two func-
tions that allow them to process a continuous 
stream of music into smaller segments: the 
ability to perceive multiple, successive tones 
as one coherent melodic phrase (melody 
segmentation) and the ability to differentiate 
melody notes from accompaniment (voice 
separation). For both of these tasks, several 
algorithmic models have been proposed in the 
symbolic domain.  

It seems reasonable to assume that a MIR 
system performs better when melody seg-
mentation and voice separation are done by 
cognition-based methods than when a 
primarily computational approach to segmen-
tation is employed. The question is then 
which one(s) to choose. Various authors have 
compared melody segmentation algorithms, 
but with inconclusive results. We are not 
aware of any previous evaluation of different 
voice separation algorithms. 

Aim and contribution. This paper 
describes the first systematic evaluation of 
prominent computational methods for music 
segmentation against human performance, 
with the aim to answer two questions: 

1. Is there enough agreement in human 
segmentation perception to function 
as a basis for measuring algorithm 
performance? 

2. Which algorithm best models human 
segmentation? 

These questions are investigated both for 
melody segmentation and for voice sepa-
ration. We will show that for the former there 
is sufficient agreement and that there are 
three methods that perform better than the 
others. For the latter, there are differences 
between types of users, and the optimum 
performance may be reached using the 
results of two algorithms. 

Organisation. First we discuss model 
selection in computational musicology. Then 
the algorithms that are used in the 
experiments are briefly described. This 
includes a summary of evaluation results 
from the literature. Next the experiments are 
described. Conclusions and perspectives for 
future research conclude this paper. 

Model selection 

The increasing number of computational 
models in music research calls for methods to 
evaluate and compare competing models. At 
present, there are no general strategies 
available for such comparisons. Since models 
dedicated to similar musicological questions 
are often very different in nature, it is difficult 
to find a common perspective that all models 
should be reconceived upon. For instance, in 
an attempt to compare different automatic 
rhythm description systems, Gouyon and 
Dixon (2005) concluded that ‘there are no 
precise problem definitions or evaluation 
criteria, because rhythm description systems 
have been built for diverse applications using 
diverse data sets’. Temperley (2004) 
suggested such an evaluation system for 
rhythmic-metric models, which is based on 
the number of ‘correct’ answers obtained 
from a specific corpus. However, his system is 
only applicable to symbolic metrical models 
and hence not applicable to the audio-based 
models discussed by Gouyon and Dixon 
(2005). Honing (2006) on the contrary states 
that in the specific case of a computational 
model in music cognition the goodness of fit 
with the empirical data is not sufficient in 
order to test the validity of a model. Hence, 
the number of correct answers of the system 
should not be the only criterion of an 
evaluation system. He suggests to consider 
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the degree of surprise in the predictions of 
the model as an important factor of the 
evaluation. Similarly, Volk (2005) proposes 
that surprising results of a computational 
model might lead to interesting insights into 
the investigated phenomenon and could 
therefore be as important as the number of 
results correctly (in accordance with the 
empirical data) produced.  

In contrast to these very general 
considerations as to how to select between 
competing computational models, the current 
paper compares models on melody 
segmentation and voice separation in a 
specific research context. Our aim is to find 
the best candidate for incorporation into a 
MIR-system. In contrast to Temperley’s 
evaluation model that derives the ‘correct’ 
answer directly from the music notation, 
there is no formal theory available from which 
the ‘correct’ segmentation could be 
determined. Hence, we compare the results 
produced by the models to those obtained in 
a human decision process in order to evaluate 
the model. However, our main focus here is 
not a general psychological validation of these 
models. By measuring the fit between the 
model and the empirical observation we 
provide the starting point for a more general 
verification of these models, as pointed out 
by Honing (2006). Moreover, we suggest 
specific model selection criteria that are 
important within the context of MIR. 

Segmentation algorithms 

Numerous algorithms have been proposed for 
both melody segmentation and voice separa-
tion tasks. The following overview describes 
only those approaches that we tested for this 
research. De Nooijer (2007) provides a fuller 
survey of known approaches.  

Melody segmentation 

Five melody segmentation methods were 
studied in our experiment. Their most 
important properties are shown in Table 1. 

Temporal Gestalt units (TGU’s). TGU’s 
were introduced by Tenney and Polansky 
(1980); for the experiment Eerola and 
Toiviainen’s implementation was used (2004). 

This model employs several ‘measures of 
change’: absolute pitch interval (API, in 
semitones) and inter-onset interval (IOI, in 
eighth notes) are used for this experiment. 
The distance between two events is the 
weighted sum of these measures. In our 
experiment, they receive equal weight. A 
boundary between so-called ‘clangs’ is 
constructed where a local maximum in the 
distance occurs. Each clang is then 
characterised by its onset time and average 
pitch. These values are submitted to the 
same procedure to create segment borders. 

Local Boundary Detection Model (LBDM). 
LBDM (Cambouropoulos 1998, 2001) employs 
three parameters: API, IOI and offset-to-
onset interval (OOI). These values are 
normalised and their weighted sum is 
calculated (wAPI = 0.25; wIOI = 0.50; wOOI = 
0.25 in our experiment). A degree of change 
is then calculated for each pair of successive 
intervals. The boundary strength of an 
interval is determined from its weight and its 
change degree to the preceding and following 
intervals. For details of the calculations see 
Cambouropoulos (1998, 2001). A boundary is 
created when this value lies above a certain 
threshold (values 0.4, 0.5 and 0.6 were used 
in the experiment, abbreviated LBDM4, 
LBDM5 and LBDM6). 

Grouper (GRP). This method is based on 
metric information only (Temperley 2001; 
implementation by Sleator and Temperley 
n.d.). A gap score for each interval is 
calculated by taking the sum of IOI and OOI. 
Candidate boundaries are scores above a 
certain threshold. Candidate groups are given 
a penalty for their deviation from the ideal 
length, and for beginning on a different 
metrical position than the preceding group. 
The optimal segmentation is the one, which 
has the lowest sum of penalties of all possible 
solutions. 

Melodic Similarity Model (MSM). This 
model, proposed by Ahlbäck (2004) combines 
bottom-up Gestalt-oriented principles such as 
similarity, proximity and good continuation, 
with a top-down analysis involving melodic 
parallelism and structure. The model provides 
a so-called section analysis as the result. 
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Name Method Features Input Output Processing Parameters 
TGU’s Model-

driven 
API, IOI; other 

features can be added 
MIDI Graphic Sequential Weighing 

LBDM Model-
driven 

API, IOI, OOI MIDI Graphic Sequential  Threshold, weights 

GRP Model-
driven 

IOI, OOI, Meter Meter (from 
Melisma) 

Text Non-
sequential 

Threshold, ideal length, length 
penalty, metrical penalties 

MSM Model-
driven 

Pitch, IOI, OOI, Metric MIDI Graphic Non-
sequential 

(None) 

ID Data-
driven 

Pitch, duration, onset, 
key 

Humdrum Humdrum Sequential (Unspecified) 

Table 1. Properties of the selected melody segmentation algorithms. Abbreviations are explained in the main text. 

Information Dynamics (ID). This model 
creates boundaries at points of expectancy 
violation and predictive uncertainty (Pearce 
and Wiggins 2006; Potter et al. 2007). The 
assumption is that listeners perceive a 
boundary where the context fails to inform 
about forthcoming events. The model has a 
long-term and a short-term memory model. 
The former is an n-gram model that was 
trained on c. 900 tonal melodies. The latter 
has no prior knowledge but learns from the 
current piece. Boundaries are calculated 
using the entropy of events as a measure 
for the uncertainty of the model’s 
expectation. 

Voice separation 

Five voice separation methods were studied 
in our experiment. Their most important 
properties are shown in Table 2. 

Skyline. For each onset time in a 
polyphonic piece, this algorithm determines 
the highest sounding note (Clausen n.d.). 
All other notes are discarded. Thus, a 
monophonic melody is created consisting 
solely of the highest-pitched notes. 
Uitdenbogerd and Zobel (1998) describe 
several variants that deal with MIDI-specific 
issues. 

Nearest Neighbour (NN). This algorithm 
creates a set of melodies out of a 
polyphonic piece by joining each note to the 
immediately preceding note that is closest 
to it in pitch (Clausen n.d.). 

Streamer. This model (Temperley 2001; 
implementation by Sleator and Temperley 
n.d.) represents a polyphonic piece in 
quantised piano-roll notation. Melodies are 
formed by finding connections between 
notes that satisfy four wellformedness rules 
and five preference rules. Penalties for 
violating the latter act as parameters of the 
model. 

Voice Separation Analyzer (VoSA). In 
this method, developed by Chew and Wu 
(2004), a polyphonic stream is divided into 
short monophonic fragments. These are 
grouped in simultaneously sounding 
contigs. Within a contig, the number of 
fragments is constant at any time. 
Fragments within a contig satisfy a number 
of requirements that derive from the pitch 
proximity principle and the avoidance of 
stream-crossing principle. The contigs with 
the maximum number of voice fragments 
are used as starting points for iteratively 
connecting contigs into larger units. 

 
Name Features Input Output Processing Parameters 
Skyline Pitch, onset, 

duration 
MIDI MIDI Sequential None 

NN Pitch, OOI MIDI MIDI Sequential None 
Streamer Pitch, onset, 

duration 
Meter (from 

Melisma) 
Text Non-

sequential 
Max. voices, max. collisions, penalties for 

violating preference rules 
VoSA Pitch, onset, 

duration  
MIDI MIDI, 

Graphic 
Non-

sequential 
None 

SSA Pitch, onset MIDI MIDI Sequential Penalties for starting notes, ending notes, 
inserting rests and leap size 

Table 2. Properties of the selected voice separation algorithms. Abbreviations are explained in the main text.  



Stream Separation Algorithm (SSA). 
Madsen and Widmer (2006) present an 
algorithm inspired by Streamer but particu-
larly intended for online use. It considers 
groups of notes that begin approximately at 
the same time. Sustained notes are not 
included. Groups are processed sequentially. 
In assigning notes to a voice the following 
requirements apply: (1) each note must be 
assigned to exactly one voice and (2) 
overlapping notes are not allowed. Also, 
leaps, number of voices and number of rests 
within a voice must be minimized. Voice 
crossing is not prohibited but is expensive as 
it generally involves multiple leaps. 

Previous evaluations 

Figure 1 provides an overview of tests and 
claims about the performance of melody 
segmentation algorithms that have been 
published in the literature. For voice 
separation algorithms, the only comparison 
we know of is one of variants of the Skyline 
algorithm (Uitdenbogerd and Zobel 1998). 

 
Test results 

Cambouropoulos (2006) PAT > LBDM 
Thom et al. (2002) Grouper > LBDM 

Ferrand et al. (2003) MDSM > LBDM 
Ahlbäck (2004) MSM > LBDM 
Ahlbäck (2004) MSM > Grouper 

Claims 
Bod (2002) DOP > Gestalt 

Meredith (2002) LBDM > Grouper 

Figure 1. Tests and claims about the performance of 
melody segmentation algorithms. The operator ‘>’ should 
be read as ‘performs better than.’ Algorithms not 
discussed in the main text are Data Oriented Parsing 
(DOP, Bod 2002), the Melodic Density Segmentation 
Model (MSDM, Ferrand et al. 2003) and the Pattern 
Boundary Detection Model (PAT, Cambouropoulos 2006). 

The tests and claims are summarised in 
Figure 2. Most of these were published by the 
authors of the algorithms, and generally a 
comparison is made to only one other 
algorithm. There is no consistency between 
experiments in method, criteria and circum-
stances. Therefore it is impossible to create a 
reliable overview out of these data, as is 
evident from the different judgments of the 
relative merits of LBDM and Grouper. Instead, 
we offer a systematic and independent 
evaluation of all algorithms that were 
available to us. 

MSM > Grouper > 
MDSM > 

DOP > 

Grouper < 
  PAT > 

LBDM 

Figure 2. Summarized test and claims from Figure 1. 
Claims are shaded in grey. 

Experiments 

Melody segmentation 

Method. In the melody segmentation 
experiment, 40 participants were asked to 
chunk 10 melodies. The group consisted of 20 
novices and 20 experts (conservatory 
students, (semi-)professional musicians, etc.) 
We performed cluster analysis to determine 
the division of participants between groups. 
Because of the inclusion of novices, we 
avoided using any musical terminology in our 
instructions, as this might give the experts an 
advantage over the novices. For example, we 
used the term ‘sentence’ instead of ‘phrase,’ 
as the term phrase may indicate a piece of a 
certain length to those with formal music 
education, while anyone with or without 
musical education has a similar conception of 
the term sentence. 

Participants were instructed to place segment 
boundaries at those locations where they 
heard a melodic sentence ending, which 
automatically implies the start of a new 
sentence. For this purpose, they used the 
Sony Sound Forge program, which allowed 
them to place a boundary while the melody 
was playing. The interface also allowed the 
participants to correct small errors caused by 
latency, as it displays a visual representation 
of the audio file. 

Materials. The 10 melodies were selected 
from a collection of popular music in MIDI 
format that was gathered from the Internet 
by a crawler. Each melody is between 25 to 
30 seconds long, which is enough to be able 
to distinguish several segments. 

Results. The data gathered from the 
experiment were converted to note lists, in 
which marker placement for each participant 
is indicated by either a 1 (marker placed) or a 
0 (no marker placed). From these note lists, 
we first determined the degree of similarity 
for inter-participant segmentation results, 
using Fleiss and Cohen’s (1973) test for inter-



CIM08 - Conference on Interdisciplinary Musicology - Proceedings 

6 

assessor (or intraclass) coherence. The 
results show that within both groups of 
participants, the coherence is very high—
respectively α = .9675 for novices and α = 
.9902 for experts. The coherence between all 
participants of both groups is also high, α = 
.9864. Thus, we can state that there is 
enough overlap between segmentation 
amongst participants to function as a 
benchmark for algorithms. 

We compared participant output to the 
following algorithms: TGU’s, Grouper, MSM, 
LBDM (in three variants, LBDM4, LBDM5 and 
LBDM6, as described above) and ID. We used 
the Wilcoxon signed rank test to determine 
whether or not there are significant 
differences in segmentation results between 
algorithms, and between each algorithm and 
the groups of participants. The results are 
presented in Table 3. Significant differences 
are marked bold. 

 

Algorithms 
 

T
G

U
 

G
R

P
 

M
S

M
 

L
B

D
M

4
 

L
B

D
M

5
 

L
B

D
M

6
 

ID
 

TGU  .160 .239 .071 .732 .450 .007 

GRP .160  .007 .683 .108 .003 .157 

MSM .239 .007  .003 .117 .655 .000 

LBDM4 .071 .683 .003  .003 .000 .276 

LBDM5 .732 .108 .117 .003  .014 .013 

LBDM6 .450 .003 .655 .000 .014  .000 

A
lg

o
ri

th
m

s
 

ID .007 .157 .000 .276 .276 .000  

NOV .017 .085 .000 .420 .001 .000 .250 

EXP .092 .985 .002 .643 .102 .003 .072 

P
a
rt

ic
ip

a
n

ts
 

ALL .014 .128 .000 .568 .003 .000 .220 

Table 3. P-values indicating differences between algo-
rithms and participants. Significant scores are shown in 
bold print. Abbreviations: NOV=novices, EXP=expert, 
ALL=all participants. 

Several conclusions can be drawn from these 
results. The output from the TGU algorithm 
does not differ significantly from any of the 

other algorithms except ID. The output of 
TGU’s is most similar to the output of LBDM5 
(and vice versa). The three different 
parameterizations of LBDM lead to three 
significantly different results. Hence, the 
parameters strongly influence the result of 
this model instead of creating slight variations 
within the results. The output from Grouper 
and LBDM5 differs from two other algorithms, 
and the output from MSM, LBDM4 and ID 
differs from three other algorithms. LBDM6 
differs significantly from four algorithms. The 
most similar output to Grouper is that of 
LBDM4, LBDM6 is most similar to MSM. ID is 
the method that is differs most from the 
others. It most resembles LBDM4, but the 
converse is not true. 

When compared to participants’ output, ID, 
Grouper and LBDM4 show no significant 
differences with any group of participants, 
whereas the other algorithms differ 
significantly from at least two or three groups 
of participants. 

Evaluation. We can conclude that, in our 
experiment segmentation does not appear to 
be an ambiguous task, contrary to what was 
concluded by Thom et al. (2002) and Ahlbäck 
(2004). The material used might be the cause 
of this: previous researches have often used 
classical music, but we chose to use popular 
melodies. These seem to contain clear cues 
about segment boundaries. 

The results are promising for the 
implementation of a MIR system for popular 
melodies: since there are no significant 
differences in human segmentation, one 
accurate segmentation of the tunes in the 
corpus of a MIR system will suffice. In other 
words, it is not necessary to offer different 
segmentation options to, for example, people 
with different levels of music education. 

Based on the test results, we can positively 
answer our first research question. Since 
there is a high intraclass agreement between 
experts and novices, their melody 
segmentation results can function as a basis 
for algorithm benchmarking. 

In addition, we can conclude that the results 
of LBDM4, Information Dynamics and 
Grouper’s neither differ significantly from the 
participants’ results, nor from each other. 
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Hence, based on the results of this 
experiment, none of the three models can be 
selected as the best one. Thus, LBDM4, 
Information Dynamics and Grouper are 
plausible candidates for implementation. 

Voice separation 

Method. For the voice separation 
experiment, the same 40 participants were 
presented with a short musical sample and 
were then asked to determine through pair-
wise comparison of two monophonic lines 
(‘variants’) which line best resembled the 
melody heard in the original musical piece. 
Participants were allowed to listen to the pairs 
as many times as they found necessary. This 
process was then repeated for all 8 samples. 

Materials. Eight polyphonic musical 
samples were extracted from the same 
collection as in the first experiment. Each 
sample is approximately 10 seconds long, 
which is enough to be able to distinguish 
melody and harmony. Melody and harmony 
notes are of the same timbre, since 
algorithms do not take timbre into account for 
separation; therefore, participants could have 
an advantage when hearing different timbres. 

For each sample, a set of melodic variants 
was created. The number of variants in a set 
ranges from 4 to 8, and was determined by 
the output of the algorithms. Each sample 

was processed using the voice separation 
algorithms. The resulting melodies were used 
as variants in the experiment. In cases where 
several algorithms produced the same 
variant, we have included this variant only 
once in the set. For algorithms that output 
multiple monophonic lines, the one that most 
accurately represents the melody was 
selected. 

Furthermore, each set includes a manually 
extracted variant representing the melody as 
it was perceived by the first author, and two 
variants consisting of a randomly selected 
combination of harmony and melody notes 
from the original. 

Results. Because of the complexity of the 
dataset, we applied our statistical measure, 
Cronbach’s alpha for inter-rater coherence, 
only to the highest ranked variant for each 
set by each participant. The resulting values 
are αnov = 0.8966, αexp = 0.9389 and αall = 
0.9230. Since these values are all high (taken 
into account that a1 value of α > 0.70 is 
considered acceptable), we conclude that the 
inter-rater coherency between all groups is 
high, and that coherence amongst experts is 
somewhat higher than coherence amongst 
novices. After having established a high inter-
rater coherence, we calculated rankings 
based on the experts’ results (Table 4). 
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1 VoSA Author 1 SSA 1 Skyline 1 Rand1 Author Author VoSA 

2 Rand2 VoSA 2 Author 2 NN 2 Author Madsen Skyline 
1 

SSA 

3 Rand1 

1 

Skyline 3 Streamer 3 Rand1 3 Skyline 

1 

Skyline VoSA 2 Streamer 

4 Streamer 2 SSA 4 VoSA 4 Author 4 Streamer 2 VoSA Streamer 3 Skyline 

5 SSA 3 Streamer 5 Skyline 5 VoSA 5 SSA 3 NN 

1 

SSA 4 Rand1 

Skyline 4 NN 6 Rand1 6 SSA 6 VoSA 4 Rand2 2 Rand2 5 NN 
6 

NN 5 Rand1 7 NN 7 Streamer 7 NN 5 Streamer 3 NN 6 Author 

7 Author 6 Rand2 8 Rand2   8 Rand2 6 Rand1 4 Rand1 7 Rand2 

Table 4. Expert rankings of the variants per sample. Here and in the following tables, variants generated by the 

algorithms are printed in Roman type; those created by the researchers are printed in italic. Author is the optimum 

variant; Rand1 and Rand2 are the variants that were created by randomly selecting notes from the sample. 



When examining these rankings, one can see 
that the results differ rather much per 
sample. For example, when reviewing the 
rankings throughout all results of the SSA 
algorithm, one observes that it ranks in the 
top two for melodies 2, 3, 6, 7 and 8, but also 
that it occupies a mere fifth place for melody 
1 and 5, and a sixth place for melody 4. A 
similar pattern occurs for VoSA and Streamer. 
Thus, in order to get a clearer view of which 
algorithm’s variants are generally ranked 
higher, we determined how many times each 
algorithm was ranked at the first place. This 
tells us which algorithm is able to produce 
accurate results on most of the samples. The 
results are shown in Table 5. 

Here, we see that three algorithms’ variants 
are ranked at the first place on four 
occasions: VoSA, SSA and Skyline. Thus, we 
can assume that any of these three 
algorithms provide the most accurate results. 
However, each algorithm’s results are only 
accurate for four of the eight samples we 
investigated. 

The accumulated novice results are shown in 
Table 6. Here, too, the rankings of the 
algorithms differ considerably between 
samples. 

The number of times each algorithm’s variant 
was ranked at the first place by novices is 
shown in Table 5. Here, we see that the 

variants of algorithms SSA and Skyline each 
are ranked first three times. This result 
matches the experts’ result; however, the 
novices chose VoSA’s variants less often than 
the experts: the novices only ranked it 
highest in two cases. The first author’s 
melody however was ranked highest for five 
out of eight samples. 

 
Experts Novices 

Variant # 1st Variant # 1st 

VoSA 4 Author 5 

SSA 4 SSA 3 

Skyline 4 Skyline 3 

Author 3 VoSA 2 

Rand1 1 Rand1 1 

Streamer 1 Streamer 1 

Rand2 0 Rand2 0 

NN 0 NN 0 

Table 5. Number of times a variant is ranked first place 
by experts (left) and novices (right). 

Evaluation. Both novices and experts 
prefer the melodies generated by the SSA 
and Skyline algorithms. Experts additionally 
prefer the VoSA variants equally often, when 
solely considering variants generated by 
algorithms. However, novices prefer the 
melody hand-extracted by the first author to 
computer-extracted melodies. 
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1 Rand1 Author 1 Author 1 Skyline 1 Author Author Author 1 SSA 

2 Rand2 VoSA 2 NN 2 NN 2 SSA Skyline Skyline 2 Author 

3 VoSA 

1 

Skyline 3 SSA 3 Author 3 Rand1 

1 

SSA VoSA Streamer 

4 Streamer 2 Streamer 4 Streamer 4 SSA 4 Skyline 2 VoSA Streamer 
3 

VoSA 

5 SSA 3 SSA 5 Skyline 5 Rand1 5 Streamer 3 NN 

1 

SSA 4 Skyline 

Skyline 4 NN 6 VoSA 6 VoSA 6 VoSA 4 Rand2 2 Rand2 5 NN 
6 

NN 5 Rand1 7 Rand1 7 Streamer 7 Rand2 5 Streamer 3 NN 6 Rand2 

7 Author 6 Rand2 8 Rand2   8 NN 6 Rand1 4 Rand1 7 Rand1 

Table 6. Novice rankings of the variants per sample. Variants generated by the algorithms are printed in Roman type; 
those created by the researchers are printed in italic. Author is the optimum variant; Rand1 and Rand2 are the 
variants that were created by randomly selecting notes from the sample. 



None of the algorithms is able to end up at 
the highest rank for more than half of the 
melodies. Therefore, we might consider 
offering multiple solutions. When we offer 
both SSA and Skyline as voice separation 
algorithms, they would together deliver the 
most resembling (or: highest ranked) 
melodies in five out of eight cases according 
to novices’ rankings, and six out of eight 
cases according to experts’ rankings. Other 
combinations of algorithms yield lower scores. 

Conclusion and future work 

The evaluation of computational models 
based on the measure of fit to empirical data 
we describe in this paper obtained different 
kinds of results for the melody segmentation 
and voice separation tasks. The results of the 
human melody segmentation experiment 
showed sufficient agreement among the parti-
cipants to function as a basis for measuring 
algorithm performance. Three algorithms 
were close to the human performance of this 
task: Grouper, Information Dynamics and 
LBDM4. Among the voice separation 
algorithms, none of the models came close to 
human performance; therefore, combining 
the results of two algorithms, SSA and 
Skyline is suggested. Furthermore, novices 
and experts differed in their evaluation of the 
results of the voice separation algorithms. 
Hence, there is no immediate answer which 
voice separation model should be selected. 

The evaluation of computational models in 
this paper does not aim at a general 
psychological validation of these models but 
is a first step for a model selection for a MIR 
system. In order to select the most 
appropriate model among the three highest 
scoring candidates for melody segmentation, 
two additional criteria need to be applied, 
namely the nature of the corpus and the 
requirements of an efficient implementation. 

Potter et al. (2007) claim that the data-driven 
Information Dynamics model represents the 
‘typical human Western musical experience’. 
It would therefore seem to be generally 
applicable and furthermore not to require any 
further training. We do not know how musical 
features are weighed in this model. However, 
if we know certain properties of the 
repertoire, algorithms may be selected on the 

basis of this knowledge. In particular, if the 
corpus contains rhythmically strong tunes, 
Grouper might be the most appropriate 
algorithm, while for tunes with less 
differentiated rhythms the pitch-based LBDM4 
is likely to produce better results. Also, as 
one can discern a trend for Information 
Dynamics’ results to differ from Grouper’s and 
LBDM4’s, it seems likely that in a MIR system 
Information Dynamics may produce different, 
but equally good retrieval output as the 
others. In other words, one would expect the 
retrieval results to be complementary. 

For an implementation in a MIR system the 
output as well as the input of the models 
have to be considered. Most algorithms offer 
a graphical representation as output, which 
allows a quick interpretation of the results by 
humans (see Tables 1 and 2). However, such 
output is not directly usable in MIR systems, 
which need the data generated by the 
segmentation method to be processed in a 
symbolic format. Some of the algorithms 
would therefore need to be re-implemented. 

Another consideration for implementation is 
computational efficiency. We did not study 
the computational properties of the methods 
in detail, yet it seems likely that methods that 
process the data sequentially, such as 
Information Dynamics, LBDM and Skyline, 
possess a better time complexity than 
methods that process the music in several 
iterations, such as Grouper, Streamer and 
VoSA, especially if the number of iterations 
depends on the length and/or number of 
polyphonic parts of the music. 

In order to test our underlying hypothesis, 
namely that a MIR system performs better 
when melody segmentation and voice 
separation are done by cognition-based 
methods, we need to do another series of 
experiments. For these, the best performing 
algorithms will be implemented in a MIR 
system. They will be employed to segment 
both the queries and the dataset. The 
retrieval performance of this system will be 
compared to that of another version of the 
MIR system, which employs the same 
similarity measure but segments the data 
with a method that is not cognition-based. 
The comparison of the results of both 
versions of the MIR-system will determine 
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whether or not one system performs 
significantly better than the other. 
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